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Diffraction of Kelvin waves at a sharp bend 

By B. A. PACKHAM AND W. E. WILLIAMS 
Department of Mathematics, University of Surrey 

(Received 10 November 1967) 

A closed form solution is obtained for the linearized problem of the diffraction 
of Kelvin waves by a sharp bend on a rotating earth. It is shown that for the 
frequency w of the incoming wave less than f, where +f is the angular velocity 
of rotation, the wave is transmitted around the bend without change of ampli- 
tude. For w > f the amplitude is in general reduced but is unaltered for the 
special angles 7~/(2n+l). For these special angles the solution is obtained in 
elementary terms. 

1. Introduction 
The diffraction of a Kelvin wave at  a right-angled bend in a straight coast line 

which bounds a sheet of water of uniform depth rotating with constant angular 
velocity about a vertical axis has recently been considered by Buchwald (1968) 
using a Wiener-Hopf technique. 

His method is only directly applicable to the case of a right-angled wedge and 
it is therefore desirable to consider the wave field due to an incident Kelvin wave 
for a wedge of arbitrary angle. 

In  this paper, the solution is obtained using a method employed by Williams 
(1959) and extended by Faulkner (1965) for problems concerning the diffraction 
of electromagnetic waves by wedges. The method depends on choosing a suitable 
contour integral representation for the solution and reducing the boundary- 
value problem to the solution of a difference equation. If the frequency of the 
incident wave is w and the angular velocity of rotation is 4 f, then the solution and 
choice of contour depend on whether w is less than or greater than f. In  both cases 
the solution may be expressed in terms of the double gamma function. 

Despite the fact that some of the analysis is complex it has been found possible 
to obtain elementary expressions in each case for the transmission coefficient T 
defined as the ratio of the amplitude of the transmitted wave to that of the inci- 
dent wave. For w < f, T = 1 ; that is Kelvin waves are propagated round a corner 
of any angle without change of amplitude. This agrees with Buchwald’s result 
for the special case of a right-angled wedge. For w > f, T 6 1, where equality 
occurs at all frequencies for wedge angles 7r/(2n + 1) (n a positive integer) and for 
these angles only. The dependence of T on the wedge angle is shown graphically 
for several values of flu. Buchwald has not calculated T for w > f for his special 
case of a right-angled wedge, but the calculation can be made and the result is 
found to agree with the general expression. 
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If for w > f ,  T = 1, which, as we have remarked, only occurs for wedge angles 
n/(2n + I ) ,  then from energy considerations there can be no outgoing cylindrical 
wave, and it is shown that for these wedge angles the solution does not in fact 
possess a cylindrical wave contribution. Further, for this case, the solution can 
be written down in elementary finite terms consisting of the incident and trans- 
mitted waves together with (n- 1) Kelvin waves and n Poinear6 waves which 
are attenuated within and along the wedge. 

It should be noted that the problem of diffraction of an incident plane wave is 
identical to the problem of electromagnetic scattering treated by Faulkner 
(1965). This problem has also been treated by Roseau (1967) who seems unaware 
of Faulkner’s work. 

2. Formulation of the problem 
Consider a plane horizontal sheet of water contained between two vertical 

planes forming a wedge of angle y. In the undisturbed state the water has a 
depth h and the whole system has a uniform rotation Q f about a vertical axis. 

The problem is most coiiveniently stated in terms of a cylindrical polar system 
of co-ordinates (r,  6 ,  z )  rotating with the wedge, such that the edge of the wedge 
is the z-axis, the base of the sheet is x = 0, and the bounding planes are 6 = 0 and 
8 = y. If, in the disturbed state, the equation of the free surface is z = h+ [, then 
the linearized long wave equations are, 

u -f-i) = - t 

and 

- 
v,+fZ = - 

where E(x, y, t ) ,  V ( x ,  y, t )  are the horizontal radial and transverse components of 
velocity. 

Assuming c(x, y, t )  = p(z, y) eiwi, and similarly for Z and 5, it  is easily deduced 
that P 

(2.2) 

(2.3) 

and (V2+k2)5  = 0, (2.4) 

io 
hk2v = - f g r  + 7 <*, 

where lc2 = (w2 -f2)/c;, and c$ = gh. 
Our boundary-value problem is therefore to find a solution of (2.4) such that 

ag i w  ag 
ar r a8 

f - - - - = O  for 6 = O , y ,  

and such that the incident wave is an incoming Kelvin wave along the boundary 
6 = y. Such a wave of unit amplitude is given by 

c0 = exp [ikr cos (8 - y - A ) ] ,  (2.6) 
where f = ic, k sin h and w = c, E cos A. 
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In  order to obtain a solution of this boundary-value problem we follow 
Williams's approach and assume that < may be defined by 

(2.7) 

if the contour C and functionf(v, 0) are suitably chosen. It is also necessary at this 
stage to distinguish between the two cases w > f and w < f .  

Case I. w > f .  Here k is real and h is purely imaginary, say h = - ih,, where 
A, is real, so that in this case 

f = c,k sinh A, and w = co k cosh A,. (2.8) 

Case 11. w < f .  Here k is imaginary, say k = - iK ( K  > 0 ) ,  and h is of the form 
h = $7 - ih,, where A, is real, Hence in this case 

f =  c,Kcoshh, = ic,kcoshh, and w = c,Ksinhh, = ic,ksinhh,. (2.9) 

In  the case w > f the choice of contour is identical to that of Williams and 
Faulkner, and the problem differs from that considered by Faulkner only in the 
nature of the incident wave. 

The case w < f ,  however, requires a different choice of contour and this will 
be discussed in due course. 

3. Solution for the case w > f 

We look for a solution of the form (2.7) in which k is real, where f (v, 19) is a 
continuous, analytic function of v and C is a contour which lies entirely in the 
strip - in- < 94% < &-, with end-points at  - ico- &n and - ioo + gn-, and such 
that it lies below all singularities off(v, 0). In  order to ensure the uniform con- 
vergence of the integral and the integrals obtained by replacing f (v ,B)  by its 
first or second derivative with respect to 8, it is necessary to make further 
justifiable assumptions concerning the behaviour of f (v ,  O ) ,  the details being 
given in Williams (1959). 

It is then found (1959) that (2.7) is a solution of (2.4) if 

f ( v ,  19) = g,(v + e )  + g,(v - 01, (3.1) 

where g, and g, are arbitrary functions. 
If we write 

J ,  = Ic g(v 19) exp [ - ikr cos v] d v ,  

then 

whilst an integration by parts gives 

(3.2) 
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It therefore follows that the boundary conditions on I9 = 0, y are satisfied if 

(w  sin v + i f  cos v)g,(v)  = (w sin v - i f  cos v )g2(v ) ,  

(w sin v + i f  cos v) gl( v + y )  = (w sin v - i f  cos v)g2(v - y) ,  and 

or equivalently sin (I’ - A )  gl( 1’) = sin ( v + A )  g2( 1’) , (3.4) 

(3.5) and sin (1’ - A )  gl( v + y )  = sin (v + A )  g2( v - 71). 

From (3.4) and (3.5) we find that a solution of (2.4) satisfying the boundary 
conditions (2.5) is 

1; = 1 (G(v + 0) + K ( v  - 19, A )  G(v - 0))exp [ - ikr cos v ldv ,  (3.6) 
C 

where G(1,) = G ( Y + ~ ~ ) K ( v + ~ , A ) K ( v ,  - A ) ,  (3.7) 

and 
sin (1, - A )  K(J’ A )  = ~ 

’ sin (v + A)’ 

The problem is thus reduced to finding that solution of the difference equation 
(3.7) which gives the correct behaviour for 5 at infinity. That is, for large values 
of r ,  the solution must consist of the incident Kelvin wave, a transmitted Kelvin 
wave and an outgoing cylindrical wave. 

The normal saddle-point method shows that the saddle point a t  v = 0 gives an 
outgoing cylindrical wave, whilst the saddle point a t  1’ = 77 gives an incoming 
cylindrical wave. Using the argument in Williams (1959), the term arising from 
v = 7i vanishes if G ( v )  satisfies the subsidiary condition 

(3.9) G(v)  sin (v- A) = -a(%- 11) sin (v+ A). 

Again using the argument in Williams (1959), the condition that 6 should be 
finite for large r implies that the integrand of (3.6) must have no poles in the strip 
4 v < 0 , 0  < 9 v  < 77. Finally, there must be poles on Yv = -A ,  to provide the 
Kelvin waves and the integrand of (3.6) must satisfy the convergence require- 
ments referred to above. 

Now the most general solution of (3.7) which satisfies (3.9) is G(v)  = H,(v)H(v) ,  
where H ( v )  is a particular solution and H,(v) is such that 

H,(v) = f f , (v+2y),  (3.10) 

and N,(v)  = H,( 277 - 11) .  (3.11) 

A particular solution of (3.7) may be expressed, as in Faulkner (1965) in terms 
of the solution F(v)  of the subsidiary equation 

sin (v + A )  F(v )  = sin (v - A )  F(v + 3y). (3.12) 

Such a solution is clearly 
H,(v) = F(v+y)/F(1,). (3.13) 

We now put v = 277, A = 2yp and F(v)  = F(2y7)  = I(7).  Equation (3.12) 
then becomes 

(3.14) 
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Consider the function I (7)  defined by 

(3.15) 

where M(v,S)  is Barnes's (1899) double gamma function which satisfies the 

M(V + 1 , ~ )  = r ( v / q M ( v ,  s), difference relation 

and 2y7 = n. 
From (3.15) and (3.16) we obtain 

(3.16) 

(3.17) 

It therefore follows that I ( r )  defined by (3.15) is a solution of (3.14). Inspection 

I ( 7 )  r ( [r+P1/7 )r ( l -  [a+LCl/4 sin2y(r-/&) m = r([r-rul/7)r(l-"r--llLl/T) - sin2y(r+p)' 

of (3.15) shows that (3.18) 

and by using Barnes's formula 

we obtain (3.20) 

Returning to our original variables we therefore have that the function F ( v )  
defined by (3.15) satisfies (3.12) and the relationships 

F(v)  = F(2y+n--v) ,  (3.21) 

and 
sin 7(v - A )  
sin 7(v + A )  F ( v )  = F(v+n-). (3.22) 

Prom equations (3.18), (3.21) and (3.22) we may show that 

sin(v+h) tan~{A+ (2n--v)-n-} 
- (3.23) 

H1(2n--v) sin(v-A) tanT{A+u-n-) ' 

Hence if we put H ( v )  = H,(v)tan~(A+v-n), (3.24) 

then H ( v )  satisfies (3.9). Further, since Hl(v) is a solution of (3.7) and 

HlM - - ~~~~ ___ __ ~~~ 

tan T ( A  + v -n) 
is a solution of (3.10) it follows that H ( v )  is also a solution of (3.7). 

Hence H ( v )  is a particular solution of (3.7) which satisfies (3.9). 
It now remains to choose H,(v) so that the integrand of (3.6), which in view 

of (3.9) may be written in the form 

5 = J {G(v + 8)  - G(27r + 8 - v)> exp [ - ikr cos v]dv, (3.25) 
C 

has no poles in $(v) = 0, 0 < a(v) < n-, and such that the remaining conditions 
at  infinity are satisfied. 

In  considering the behaviour of 5 for large values of r it is necessary to deform 
C into the saddle-point curve illustrated in Williams (1959). The integral over the 
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saddle-point curve gives the outgoing cylindrical wave, whilst the Kelvin waves 
are given by the residues at  those poles on 4 v  = - A, which are captured in the 
deformation. A wave will be outgoing if the pole lies in 9v < 0,  - $7 < 9% < 0 ,  
and incoming if the pole lies in $v < 0,  rr < Wv < 371. For those values of 8 for 
which a pole lies within either of these strips or the strip $v > 0,O < Wv < rr, the 
corresponding wave is exponentially damped. The wave is purely trigonometric 
and incoming if it lies on Bv = rr, and purely trigonometric and outgoing if it 
lies on 9 1 ’  = 0. Hence the incident wave ( 2 . 6 )  corresponds to a pole at 

v = rr-@+y+A, 

which lies in 9 v  < 0,v  < 9 v  < 3 for 0 < 3 < y and on Wv = rr for 0 = y. 

H,(v) = constant. 

that the poles of H ( v  + 8) are at 

It is now easily verified that all the remaining conditions are satisfied with 

For, since the zeros of M(z ,  8)  are at  x = - (m8-tn), m ,  n = 0 , 1 , 2  ..., it follows 

v = -(m-l)rr--h-O-(2n+l)y, (3 .2  6 a)  

v = (m+2)n-h-O+2(n+l)y, ( 3 . 2 6 6 )  

v = (m+l)rr+Ah8+$2n+l)y ( 3 . 2 6 ~ )  

and v = -mn+h-@-Zny. ( 3 . 2 6 d )  

Similarly, those of H(2rr + 8 - v) are at  

v =  -(m-l)rr-A+0-(2n+l)y, (3 .27 a )  

1’ = ( m + 2 ) n - A + 0 + 2 n y ,  ( 3 . 2 7 6 )  

= (m+ qn+++e+pn+ i ) y  ( 3 . 2 7 c )  

and v = -mmn+A+8-2(n+l)y. (3 .27d)  

Bearing in mind that in this case A = - ih, (A, > 0) we see that there are no 
poles in the strip $1’ < 0,  0 < Wv < rr. Also, any pole captured in the upper half 
plane will give a damped wave, so that poles of the sets (a)  and ( b )  may be ignored 
in discussing conditions at  infinity, as may any pole in the lower half plane which 
does not lie on 9% = 0 or 3v = rr. The only poles which give a finite contribution 
at  infinity are ( 3 . 2 6 ~ )  with m = n = 0 and 8 = y, and ( 3 . 2 6 d )  with m = n = 0 
and 8 = 0. The first clearly gives the incident incoming wave along 8 = y ,  and 
the second is the transmitted Kelvin wave along 8 = 0. 

It therefore follows that H,(v) is an analytic function having no poles and 
bounded at  infinity, i.e. H,(v )  = A ,  where A is a constant. 

If the incident wave (2.6) is of unit amplitude then A is determined from the 
equation 

where R, is the residue at  1’ = rr + A + y - 0 of 

(3.28) BniR, = 1, 

{G(v+8)-G(Zn+O-v)}.  
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Simple manipulation shows that 

R, = AlimwH(w+n+h+y). 
W-tO 

(3.39) 

The complete solution of the boundary-value problem for the case w > f is 
thus given by 

L 

5 = A J  {H(v+e) -H(2n+0-v ) }exp[ - i k rcosv]dv ,  (3.30) 
C 

where A is given by (3.28) and H ( v )  is given by (3.24), (3.13) and (3.15). 

4. Solution for the case w < f 

this case X: = - ih', of the form 
We again assume there is a solution of the form (2.7), or equivalently, since in 

It will be assumed, as in $3,  that apart from poles f (v ,  0) is a continuous, 
analytic function of v and is such that all integrals occurring are uniformly 
convergent. The contour C is chosen to be the line Wv = - in, with end-points 
- Qn - ico and - QT + ico, indented at v = - in & ih, so that the two points lie 
to the right of the contour. It will be seen later that the indentations are necessary 
in order that poles off (v, 0) do not cross the contour for certain values of 0. If this 
were to happen then 6 would be discontinuous and this is avoided by indenting 
C. 

It then follows from $3,  replacing k by - i K ,  that a solution of 

(V2-KZ)C = 0 (4.2) 

satisfying the boundary conditions (2.5) is 

5 = J {G(v + 0) + K(v-  0, A )  G(v - 0))exp [ - K r  cos vldv, (4.3) 
C 

where G(v)  satisfies the same difference equation (3.7) as before and K ( v , h )  is 
given by (3.8). 

The problem is thus reduced to finding that solution of the difference equation 
which gives the correct behaviour for at infinity. Applying the saddle-point 
method to the contour integral (4.3) the relevant saddle point is at  Y = 0 and the 
corresponding steepest descent curve is the imaginary axis. In  deforming C into 
the imaginary axis certain poles of the integrand will be captured and 6 will be 
given by the integra'l over the steepest descent curve together with terms 
arising from the captured poles. For large values of r the integral over the steepest 
descent curve is of the form Ar-4 exp ( - Kr) so that in this case there is no cylin- 
drical wave and the subsidiary condition (3.9) is not required. The residues at  the 
poles captured in the deformation which lie in -Qn < Wv < 0 produce terms 
which are exponentially damped. Purely trigonometric waves will be given by 
capturing poles at v = - Qn & ih,, that at  v = - in + ih, being outgoing and that 
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at v = - +n - ih, being incoming. The incident Kelvin wave (2 .6)  must therefore 
correspond to a pole at v = h + y - 8 - n, and the transmitted wave to a pole at 
v = 8- A. These poles, in view of the indentations, will lie always to the right of 
C and will be captured in the deformation. 

Our object is therefore to construct a solution of (3 .7)  for which the integrand 
of (4 .3)  has the correct poles. Since we have already shown that H,(v), as given 
by (3.13),  is a particular solution of (3.7) the most general solution is 

G(v) ’=  ~ , ( l ’ ) ~ o ( ~ ’ ) ,  ( 4 .4 )  

where H,(v) is bounded at  the end-points of C and satisfies (3 .10) .  
The problem is thus reduced to finding H,(v) such that any inadmissible poles 

of the integrand are cancelled, and, if necessary, poles corresponding to the 
incident and transmitted waves are introduced. Now it follows from (3.12) and 
(3 .13)  that 

sin (v + A )  
sin (v- A)’ 

H,(v)H,(v+y) = 

and from (3.13) and (3 .21)  that 

H,(n+v)H,(y-1’) = 1. 

(4 .5 )  

Hence (4 .3)  may also be written in the form 

5 = f (Hl(v+ 8)Ho(v+ 8)  + Ho(v- 8)H,(n+ 8- v))exp [ - Krcos vldv.  (4 .7)  

Since the zeros of M(x, 6 )  are at  x = - ( m 6 + n ) ,  m, n = 0 , 1 , 2 ,  . , ., it follows that 

1’ = - (m + &)n + ih, - (2n  + 1 ) y -  8, ( 4 . 8 a )  

1’ = ( m + Q ) n - i i h 1 + ( 2 n + 1 ) y - 8 ,  (4 .8b )  

v = ( m + & ) n + i h 1 + 2 ( n + l ) y - 8  ( 4 . 8 ~ )  

and v = - ( m - l )  n - i h 1 - 2 n y - 8 .  (4 .8d )  

C 

the poles of H,(v + 8)  are at  

Similarly, those of Hl(n + 8 - v) are at 

and 

1’ = - ( m + & ) n + i h 1 - ( 2 n + l ) y + 8 ,  (4 .9a )  

1’ = ( m + 3 ) 7 r - i i h l + ( 2 n + l ) y + 8 ,  (4 .9b)  

1’ = ( m + & ) n + i h l + 2 n y + 8  (4 .9c )  

i’= - ( m - 4 ) n - i h 1 - 2 ( n + 1 ) y + 8 .  ( 4 . 9 d )  

Of these the inadmissible poles are 

and 

v = &T-iiA1-22.ny-8, (4.1.0) 

1’ = + n - - i h l - 2 ( n + l ) y + 8 ,  (4 .11)  

v = -1T- 2 ih,-8 (4.12) 

1’ = -*n+ih1-y+8. (4.13) 
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The poles (4.10) and (4.11) are cancelled if Ho(v) has a factor tanT(v-h), the 
pole (4.12) by a factor tanT(v-A++) and the pole (4.13) by a factor 

tanT(v+h+y) = cot~(v+h) .  

It is now easily verified that these same factors introduce the required incident 
and transmitted waves and that the solution is given by 

Ho(v) = A’tan~(v  - A )  t a n ~ ( v  - h + n) cot T ( V +  A ) ,  (4.14) 

where A‘ is a constant. Clearly H,(v) is bounded at  the end points of C. 
With this choice of Ho(v) a straightforward calculation taking account of the 

cancellation of poles and zeros shows that the poles of Ho(v+8)Hl(v+8) are at 

and 

17 = - ( m + # ) n + i h l - ( 2 n + l ) y - 8 ,  (4.15 a) 

1’ = ( m - 4 ) n - i A 1 + ( 2 n + l ) y - 8 ,  (4.15b) 

v = ( m - & ) n + i i h 1 + 2 ( n + l ) y - 8  (4.15 c) 

v = - (m+#)n- ih l -2ny-8 .  (4.15 d )  

Similarly, those of Ho(v - 8 )  Hl(n + 8 - v) are at 

v = ( m - & ) n + i h l + 2 n y + 8 ,  (4.16 a) 

v = - ( m + # ) n - - i h 1 - 2 ( n + l ) y + 8 ,  (4.16 b)  

v = -(m+#)7r+iih1-(2n+l)y+8 ( 4 . 1 6 ~ )  

and v = ( m - ~ ) n - i i h l + ( 2 n + l ) y + 8 .  (4.16d) 

The only poles giving a finite contribution at infinity are (4.15 b) withm = n = 0 
and 8 = y, and (4.16a) with rn = n = 0 and B = 0. The first dearly gives the 
incident wave along 8 = y ,  and the second is the transmitted wave along 8 = 0. 
Any other pole either lies to the left of 9 v  = -#n and may be ignored in dis- 
cussing conditions at  infinity or gives rise to a damped wave if it is captured in 
the deformation. 

The required solution is therefore given by (4.3) with 

G(v)  = A’Hl(v) tanT(v - A )  tan ~ ( v  - h +n) cot 7(v + A ) ,  (4.17) 

or, since from (3.13) and (3.22) 

Hl(n+v) = Hl(v) tanT(v-h) cotT(v+h), 

G(v)  = A‘Hl(n + 1’) tanT(v - h + n). 
(4.18) 

(4.19) 

In  this case if the incident wave (2.6) is of unit amplitude then A’ is determined 

2niR; = - 1, (4.20) 
from the equation 

where R; is the residue at v = h + y - 8 - n of (G(v + 0) + K(v - 8, A)  G( v - 8)> that 

by 

is R; = lim (wG(w + h + y - n)). 
W+O 

(4.21) 
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5. The asymptotic solution 
In  the derivation of our solutions we have already discussed in some detail the 

form of the solution for large values of r .  In both cases, for sufficiently large values 
of r ,  the solution consists essentially of the incident trigonometric wave along 
the wall 8 = y and a transmitted trigonometric wave along 8 = 0. Since the 
ratio of the amplitudes of the transmitted and incident waves for large values of 
r is the quantity of chief physical significance we devote this section to its 
calculation. 

We consider first the case w > f. Let the transmitted wave be 

Bexp[-ikrcos(8-h)] 

when the incident wave is given by (2.6), then 

B = 2~iR, ,  

where R, is the residue at  v = h - 8 of {G(v + 8) - G(2n + 8 - v)}. 
Now R, = A lim wH(w + A) ,  

w+o 

so that from (3.28) and (3.29) it follows that 

H l ( w + h )  tanT(2h-n) 
Hl(w +n + h + y )  t a n ~ ( 2 h  + y )  

= lim 

Using (3.15), this becomes, after some reduction, 

B = -tan 7(n - 2h) tan 27h 

M[&$T-2p ,7 ]M[2p77]M[&-2P,7 ]M[1  + T f 2 / A , 7 ]  
k?[& +7 + 2,U, T I N [  - 2,U,-+T- 2PC, 4 * X 

Since in the part which involves the double-gamma function the numerator 
and denominator are conjugate functions, we have 

IBI = ltanT(n--2A)tan2h71. (5.2) 

In view of the linearity of the problem this is clearly the required transmission 

A similar, but rather more complicated, calculation can be made for w < f. In 
coefficient T. 

this case if the transmitted wave is B’ exp [ - Kr cos (8  - A) ]  then 

B’ = -2miRi, (5.3) 

where RL is the residue at  v = 8 - h of {G(v + 8 )  + K(v - 0, A )  G(v - 8)). Now 

R;1 = lim {sin (w  - 2h) G(w - A)} ,  
w-0 
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so that from (4.20) and (4 .21)  it  follows that 

sin (w - 2h) G(w - A )  
B’ = lim 

w--fo WG(W + + - 71.) 
sin (w - 2h) Hl(w - h + n) tanT(u - 2h + n) __ = lim-- __ .. 

oHl(w + h + y )  tanT(W+ y )  W+O 

Hence, using (4.6), 
IB’J = ~sinh2h,tanh(nh,/y) IH~(n--h)l. (5.4) 

Now 

or making use of Barnes’s formulae (3.16) and (3.19), 

r( 1 - T + 2p)  r( 1 - [2p/T]) “4 + 7 - 2,4 71 “ 1  - 7 + 2,4 71. (5.5) 

Since T - 2 p  = ihl /y ,  it follows, as before, that the part involving the double- 

H,(n-A) = -__- 7r(4 - + 2,4 r(+) N[Q - + 2p, T I M ~  +7- 2,4 71 

gamma function in (5.5) is of unit modulus and 

Hence 

n nh sin n( 4 - [ihl/y]) 1 
= - cosech 2 cosech zh, - 

7 Y I n  

Y 
Thus from (5 .4)  JB’I = 1 = T .  (5.6) 

It follows that for w < f the incident wave is transmitted around a corner of 
any angle without change of amplitude. 

6. Discussion 
For the special case y = in, or 7 = 1, we have from (5.6) and (5.2) 

T = 1 for w < f ,  (6.1) 

and (6.2) 
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This is the problem considered by Buchwald (1968). He has calculated the 
transmission coefficient T only for the case w < f and his result is identical to 
(6.1). He has not, however, given the result for w > f, but the corresponding 
calculation can be made and the result agrees with (6.2). 

The result (5.6) for w < f shows that the transmission coefficient is unity for all 
wedge angles. This may also be obtained from energy considerations, since for 
w < f the energy contribution from the diffraction term is evanescent. 

For w > f i t  follows from (5 .2 )  that 

where tanh A, =flu. Hence 

(cosh 2nh,/y + 1)1 t a n h 2  nh = 1; 
cosh 2nh0/ y - 1 Y 

T <  

(6.3) 

with equality if and only if y = n/(2n+ 1). 
We have seen that for w > f there is in general an outgoing cylindrical wave 

whose energy contribution at  a large distance is finite, so that for the special 
wedge angles n/(2n + 1) there can be no cylindrical wave. Indeed, for these angles 
and w > f, it can be shown that 

(6 .5)  
cos (n + &) ( Y  - A) sin (v + A )  sin (v + [2m/(2n + l)] + A )  n _ _ _ _ ~ - ~ - -  

H ( u )  = _ _ _ _ _ ~  ~~ 

sin(n+&)(v+h) siIi(v-h),=1 sin(v+[2rn/(2n+ 111-A)- 

In this special case, of course, (3.7) can be solved directly to give the above 
expression. It follows that W ( v )  = H(2n+u) ,  

and thus from (3.30), by applying the saddle-point method, there are no 
cylindrical waves. Further, in this case, it may be verified that 

5 = x a, exp [ - ikr cos (8 + 2my - A)] + x b,exp [ - ikr cos (8 - 2sy + A)], (6.7) 

where y = n/(2n + 1) satisfies all the conditions provided 

n I &  

ni=O s= 1 

a, = 1, 

The am terms are Kelvin waves, the incident and transmitted waves being given 
by m = n, 0 respectively, and the b, terms are Poinear6 waves and attenuated in 
the fluid region. 

From (6.8) 
,-1siii(2(s+ 1)y+2h)  (6.9) 
s=o  sin{Z(s+ 1) y -  Zth}’ 

- ______~__ n-1 sin (( 2s + 1) y - 2h) 
s=o sin(2(s + 1) y -  2h} 

a o = B =  n _ _ _ _ _ . . ~  - 

and this result can also be shown to follow from (6.5). It is easily seen that 

T = = 1. (6.10) 
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In  order to show the dependence of T on frequency and wedge angle for 
w > f, as given by (6.3),  we have plotted T as a function of the wedge angle for 
four typical values of flu. Figure 1 shows the variation of T with wedge angle 
for f / w  = J+, g, 6 and 6, where the first of these corresponds approximately to 
the semi-diurnal M ,  tide at the entrance to  the North Sea. For a given angle not 

1 

0 5  
f=& 
0 2  

0 x 2r 

Y 
FIGURE 1. Graphs of T as a function of t,he wedge angle for f / w  = d;, $, Q and .$. 

equal to 77/(2n + 1) the amount of energy converted into Poinear6 and cylindrical 
waves increases with increasing frequency. For small values of the wedge angle 
the graphs oscillate rapidly, due to the fact that for wedge angles n/(2n+ 1) 
energy is transferred completely to the transmitted Kelvin wave, and thus for 
small angles the amount of energy transmitted is very critical, especially at high 
frequencies. 

It is of interest to note that there is a marked minimum in the amplitude of the 
transmitted wave in the neighbourhood of 477, which is the case treated by 
Buchwald, and that in view of the complete reflexion at all frequencies for a 
60" corner a Kelvin wave could be propagated round a sufficiently large equi- 
lateral triangular basin with very little attenuation. 

The authors would like to thank the referee for suggesting a fuller discussion 
of the solution. This led to the discovery of the closed form solution for the special 
wedge angles 77/(2n + 1). 
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